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Abstract. A class of families of marginal probabilities on sets of discrete random variables is
studied and a necessary and sufficient condition for the consistency of the given marginals is
provided. This result allows one to verify the consistency of the marginals through a Boltzmann
statistical analysis.

The procedure is then applied in order to verify the hypotheses assumed in a recent model of
neocortical associative areas, according to which connected modules of neurons are simultaneously
active with probability higher than chance, and inter-modular connections are very diluted. The
verification becomes a typical problem of extremely diluted spin systems in Boltzmann–Gibbs
ensemble. The results presented here justify the assumptions made in the neuroscientific theory,
and an upper bound to the inter-modular activity correlation is found.

1. Introduction and summary

The probability distribution of a proper subset from the set of random variables (RVs) of
a stochastic system is usually calledmarginal probability or simply marginal and from
elementary probability it can be obtained by integration of the joint probability distribution
function (PDF) over the values of the RVs that are not involved in the marginal to be calculated.

When the complete PDF is not known and use is made of an Ansatz for its marginals, the
problem of verifying the consistency of such marginals arises. In other words, it is necessary
to demonstrate the existence of at least one joint PDF whose marginals coincide with the
conjectured ones. Otherwise, the probabilistic model would be unrealizable: no system of
RVs that follow the required statistics could be defined. In the case of a physical theory, such
inconsistency would mean that no real system could be described by that theory (as long as
probability theory is able to model physical systems).

The problem of the consistency of a set of marginals belongs to the mathematical theory of
probability distributions with given marginals. Some works about this subject can be found in
the mathematics literature, the most remarkable ones being, perhaps, the papers by Vorobev [1]
in a combinatorial context, and by Kellerer [2] in a more functional measure-theoretic fashion.

In this paper I deal with the problem of marginal consistency over sets of discrete RVs
whose pair correlations are randomly assigned, so that the system may be represented as a
random graph whose nodes can be each in one of several possible states.

† Present address: Nonlinear and Complex Systems Group, Department of Mathematical Sciences, Loughborough
University, Loughborough, Leicestershire LE11 3TU, UK.
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In section 2, I propose a general systematic method for verifying the consistency of a family
of marginals of a certain class, defined over stochastic systems of discrete RVs, making use of
results from the theory of random fields (RFs) and of Vorobev’s theorem. In sections 3–5, I deal
with a specific marginal problem to which I partially apply the method. In section 3, I describe
the neuroscientific origins of the specific problem mainly concerning the activity distribution
in mammalian neocortex. In section 4, I define this problem in terms of a probabilistic model.
I put in evidence the underlying question of probability distribution with given marginals,
and show the inapplicability of the already existing theorems on consistency by Vorobev and
Kellerer. I also derive some conditions on the parameters of the model from an assumption
of self-averaging. In section 5, approximating the method introduced in section 2 through an
Ansatz, I create a fictitious stochastic dynamics on the configuration space of the system, with
the aim of obtaining an asymptotic distribution of the activities that satisfies the marginals and
which, at the same time, can be studied through numerical simulations. Indeed, as I show, the
analytical approach to the study of the asymptotic distribution allows the verification of the
consistency of the given marginals only in a particular limit, due to difficulties in calculations.
Then, I describe and discuss the results of the numerical simulations, that favour the hypothesis
of consistency of the given family of marginals, thus supporting the underlying neuroscientific
theory.

In section 6, I summarize the results.

2. Mathematical basis of the method

Let S be a finite set ofN discrete random variables, andM a set of marginals such that any
marginal is defined either over a pair of RVs or on a single RV fromS. For any marginal
PA ∈M over a RV or a pair of RVs, calledA, in S, I callA thesupportof PA. The marginals
of all the possible pairs inS are assumed to be present inM.

The following procedure allows one to transform the complicated verification of the
consistency ofM into a statistical Boltzmann problem. This mapping is mainly based on
two steps: (1) using Vorobev’s theorem, the set of marginals is transformed; (2) it is observed
that this new set of PDFs is consistent if and only if they constitute a random field. At that
point, the representation theorem of RFs and Gibbs states can be applied.

Compatibility. The marginals inM have to be compatible, that is the marginalization of
every pair of them on the intersection of their supports must coincide. Otherwise,M is a set
of inconsistent marginals. For example, letF(x1, x2) andG(x2, x3) be two of the marginals
inM; then it is necessary that∑

x1

F(x1, x2) =
∑
x3

G(x2, x3)

for any value ofx2. In the rest I assume the compatibility of the marginals inM.

Construction of the RF. Given a variablexi ∈ S, one may consider all the pair marginals
inM whose supports containxi . This subfamily is denotedNi , andYi is the set of RVs that
belong to the supports ofNi . The RVs inYi − {xi} are theneighboursof xi from the point
of view of the Markov RF theory. The marginals inNi are compatible and their supports
constitute a regular complex [3]. Thus Vorobev’s theorem [1] can be applied:At least one
joint probability distribution of all the variables inYi exists such that its marginals over the
supports ofNi coincide with the given marginals inNi . Any distribution with this property is
called anextensionof Ni .
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Usually there are several extensions. Suppose one has two extensionsP (1)Ni andP (2)Ni ofNi .
Then for anyxm ∈ Yi − {xi}:∑

x ′
P (1)Ni (xi, xm, x

′) =
∑
x ′
P (2)Ni (xi, xm, x

′) (1)

wherex ′ is a collective symbol for{xj ∈ Yi − {xi, xm}} and the sums are over the values they
can assume. It follows that the two extensions can differ only by a functionFi = P (1)Ni − P (2)Ni
such that ∑

x ′
Fi(xi, xm, x

′) ≡ 0 (2)

for every RVxm ∈ Yi − {xi}. Thus, knowing one particular extensionPi of Ni , all the other
extensions ofNi can be obtained fromPi by adding functionsFi defined onYi satisfying the
property of equation (2).

Considering only binary RVs(xk = 0, 1), the functionFi can always be written as

Fi(x) =
∑
{m,n6=i}

(1− 2xm)(1− 2xn)ψmn(xYi−{xm,xn}) (3)

wherex represents all the variables inYi , the sum is over the indices of the RVs inYi−{xi}, and
ψmn may depend on all the RVs inYi −{xm, xn}. Thus one can choose a convenient extension
of Ni and then add to it the generic function in equation (3). As a convenient extension I take
the conditional independence distribution

P (0)i (x) = P(xi)
∏
A

PA(xA|xi) (4)

where the product is over all the supports ofNi , PA is derived from the marginal inNi with
supportA, andxA is the other RV that belongs to the supportA together withxi . The distribution
in equation (4) has the property that its marginalization over any variable inYi − {xi} is still a
conditional (with respect toxi) independence distribution.

Thus, the most general joint PDF on binary RVs inYi that satisfies the marginals inNi
can be written as

Pi (xYi ) = P (0)i (xYi ) +
∑
{m,n6=i}

(1− 2xm)(1− 2xn)ψmn(xYi−{xm,xn}) (5)

wherexR is the collective symbol for all the RVs in the setR ⊆ S. Sinceψmn additively
modifies the probabilities of the events related toYi , it cannot be completely arbitrary, so that
its values can move only in bounded intervals.

For simplicity I indicate the local solutions by9i only, implicitly keeping the arbitrariness,
provided by equation (5), that represents degrees of freedom possibly useful to the solution of
the marginal problem.

From the parametrized joint distribution9i , it is easy to extract the conditional probability
8i(xi |{xk ∈ Yi, k 6= i}). (For simplicity, I assume that no event has null probability.)

Performing this construction for every variablexm in S, one obtains the field{8i, i =
1, . . . , N} that is a RF if and only if the marginals are consistent.

Derivation of the Gibbs field. From the theorem of representation of RFs and Gibbs fields [4]
it follows that, given a RF, a Gibbs field that generates the RF exists with the canonical potential

VX(η) =
∑
U⊆X

(−1)|X−U | ln8i(η
U) ∀i ∈ X ∈ C

= 0 ∀X /∈ C (6)
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whereη is an event (that is, a realization of the RVs inX), C is the set of all the cliques of the
RF,U is a subset of the cliqueX, ηU is the vector such thatηUk = ηk whenxk ∈ U andηUk = 0
otherwise, andi indicates any variable (= node) inX.

Thus the Gibbsian distributionGS can be constructed†, whose marginals possibly generate
the RF.

Verification. At this point, possibly making use of the above-mentioned degrees of freedom,
one has to verify whether all the marginals inM can be obtained marginalizingGS . If they can,
then the familyM is consistent andGS gives the solution (or the set of solutions, since there
could remain some free parameters). If they cannot, then the given familyM of marginals is
inconsistent. In a single proposition:
The familyM of compatible marginals is a consistent set of marginals if and only if the
constructed Gibbs distributionGS is compatible with all those marginals.

This verification rule may be formalized and shown in a more rigorous treatment, and its
hypotheses a little relaxed, but it would not be very useful in the present context.

The only problem now is provided by the practical calculations, where, in the case of large
systems, statistical mechanics of Gibbs ensembles may be of some help. In fact, sometimes
calculations cannot be performed easily, as in the case analysed in the rest of this paper, where
the difficulty in managing with a large set of randomly correlated random variables does not
allow one to apply the complete procedure presented in this section.

3. Neuroscientific origin of the problem

The primate neocortex is a tissue containing a very large number of interacting neurons that
receive inputs from, and send outputs to, subcortical systems. One of the functions performed
by the neocortex, especially in its associative areas (frontal, parietal and inferotemporal), could
be the cued retrieval of information stored during past experiences, that is the recovering of
certain meaningful neuronal activity distributions (patterns). This hypothesis is supported by
anatomical findings according to which recurrent connectivity is common in the neocortex [5],
and it is theoretically well known that recurrent networks are able to retrieve stored patterns
(see, e.g., Hopfield [6], one of the precursors in the field). In particular, neurons seem to be
grouped intomodules[7] in which neurons are densely and recurrently interconnected. The
connectivity among neurons belonging to different modules is also recurrent but very sparse.
Other evidence from electrophysiological experiments [8–10] have revealed locally persistent
activity immediately following memory retrieval, a phenomenon that can be explained with
models of recurrent neuronal networks [11]. The local activity seems to be correlated to the
modular structure of the connectivity.

The whole complex of modules could therefore be a large autoassociative memory, as
proposed by Braitenberg [5]. The performance of such a network has been studied in [12]
and [13], where the authors analysed a mathematical model of a recurrent network with modular
structure and calculated itscapacity(that is, the number of patterns that the network is able
to store in its synapses) as a function of some constructive parameters. They consider each
module as a fully connected network, and distribute thelong-rangeconnections of its neurons

† The Hamiltonian of the Gibbs distribution is

H(ω) = 1

β

∑
Q

VQ(ω)

whereQ is any subset ofS, ω is any configuration of the system, and1
β

is the ‘temperature’.
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randomly to all the other modules of the large autoassociator. They suggested that such a
network is a poor, implausible model of biological cortices since it is affected by the presence
of undesired stable activity states in which each module retrieves a fraction of a pattern, while
different modules do not co-operate to retrieve the global pattern that the whole modular
network has stored. Such a network would often produce a ‘puzzle’ of several original activity
patterns.

In [14] we found a way to avoid these problems and thus to restore the possibility of a
modular autoassociative network to plausibly model neocortical areas.

First, we introduced sparseness in the modular activity: Each module(m) is active
(τm = 1) in any pattern with probabilityτ � 1. Then, we supposed that the long-range
projections of a neuron are concentrated onto the neurons of a small number of other modules
(abouts ′). This is in agreement with the experiments discussed in [5], where in the rat they
founds ′ in the order of a few units. We abstracted these findings assuming that the long-range
projections pass through what we callchannelsthat connect any module to other modules
randomly sorted out from the whole set during the ‘construction’ of the network, and then
quenched. The randomness in the quenched channels is a first approximation of the biological
structures that maybe derive from a combination of phylogenetic instructions and chance.

We then introduced statistical dependence of connected modules: if a module receives
projections from another module that is active, its probability to be active is larger than chance
(t1 > τ); unconnected modules are nearly independent. The set of natural patterns is such that
many features are not independent. Our hypothesis is that the correlation among the features
composing the natural patterns are reflected in the structure of the cortico–cortical connections.
In fact, it would seem useless or even ruinous to build up connections between modules that
analyse independent features in natural patterns, so that these modules cannot exchange useful
information, for instance, for a retrieval task with each other. Moreover, we think that the
structure and function of the channels could be related to semantic representation in the cortex.

The modifications we introduced suppress the noxious states while leaving the correct
retrieval states almost unaltered. We found that the larger the ratiot1

τ
, the better the suppression

of the undesired states. Thus, the question arises as to whether the correlated statistics is
consistent, and, if so, how larget1

τ
can be.

In the rest of this paper I define this mathematical problem of marginals in more general
terms and find some results addressing its solution. In order to imagine the following in a
neuronal context, the reader should identify the nodes of the random graph and their states
as the modules and the modular activities, respectively. The presence of a channel between
modulesm andn will be represented by the binary connection variablesmn being equal to 1,
while it is equal to 0 when the two modules are not connected to each other. The channels are
assumed to be bi-directional, that issmn = snm.

4. The randomly correlated system

Consider a set of binary RVs{τm,m = 1, . . . ,M}, with largeM; the configurations assumed
by this set trial by trial are points in{0, 1}M . Let the average ‘activity’〈 1

M

∑
m τm〉 be equal to

τ . (Angle brackets indicate the ensemble average.)
The RVs{τm} are not independent. I consider the case in which the joint PDFP({τm}) is

unknown and an Ansatz is proposed on the pair marginals (as in the problem of section 3). To
simplify the formulation, it is useful to give an intuitive representation of the system from the
beginning.

Consider a random graphG(M, s), wheres is the probability for any edge to be present;
the adjacency matrix(smn) is symmetric, that is the graph is undirected, and there is no simple
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loop (smm = 0). Each node represents one of the RVs; the presence of the edge indicates
a marked dependence in the activities of the two nodes, while two non-adjacent variables
are nearly independent (the dependence in a pair is defined as the non-factorability of their
marginal PDF†). To be more precise, the marginal distribution of the activities in a randomly
chosen pair of nodes is given by the following probability table:

P(τm = 1, τn = 1|smn) = τ t1smn + τ 2(1− smn)
P(τm = 1, τn = 0|smn) = (1− τ)t0smn + (1− τ)τ (1− smn)

(7)

wheret1 is a probability larger thanτ andt0 is smaller thanτ . According to equations (7), the
probability that two connected nodes are in the same state of activity (0 or 1), averaged over
the connected pairs, is greater than chance (positive dependence). Actually, if one looks at the
same pair(m, n) during trials, the probabilities of the activities of the two nodes are

P(τm = 1, τn = 1|S) = f 11
mnτ t1smn + h11

mnτ
2(1− smn)

P(τm = 1, τn = 0|S) = f 01
mn(1− τ)t0smn + h01

mn(1− τ)τ (1− smn)
(8)

whereS represents the knowledge of the adjacency matrix, andf 11
mn, h

11
mn, f

01
mn, h

01
mn are positive

structure factorsthat take into account the fluctuations of the marginals across the node pairs
and depend only on the quenched structure of the graph. The structure factors are normalized
as follows:

2

sM(M − 1)

∑
(m,n)

f 11
mnsmn = 1

2

sM(M − 1)

∑
(m,n)

f 01
mnsmn = 1

2

(1− s)M(M − 1)

∑
(m,n)

h11
mn(1− smn) = 1

2

(1− s)M(M − 1)

∑
(m,n)

h01
mn(1− smn) = 1

(9)

where

s = 2

M(M − 1)

∑
(m,n)

smn. (10)

Thus, the average of equations (8) over the connected and unconnected pairs returns us to
equations (7) for example,

2

sM(M − 1)

∑
(m,n)

smnP(τm = 1, τn = 1|S) = P(τm = 1, τn = 1|smn = 1) = τ t1. (11)

I also assume that the marginal distribution of a single node does not depend on the structure
of connections, that is

P(τm = 1|S) = τ. (12)

Indeed, I want to study the existence of distributions with marginals deviating from
independence without introducing ana priori position-dependent distribution of single-node
activity. From equations (8) and (12)

P(τm = 1|S) = [f 11
mnτ t1 + f 01

mn(1− τ)t0]smn + [h11
mnτ

2 + h01
mn(1− τ)τ ](1− smn) = τ. (13)

† This definition is convenient also from the neurophysiological point of view since in experiments usually only a
small number of modules can be simultaneously monitored.
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Figure 1. Probability for two nodes to be reachable one from
the other through a path of the graph versus the average number
of connections per node.

Then it must be that

f 11
mnτ t1 + f 01

mn(1− τ)t0 = τ
h11
mnτ + h01

mn(1− τ) = 1.
(14)

Averaging the first one over the connected pairs, I obtain the necessary condition

(1− τ)t0 = τ(1− t1). (15)

This may be seen as an ‘equilibrium’ condition; in fact, if one averages equations (8) over the
connected pairs and over the unconnected ones, respectively, one obtains

P(τm = 1|smn = 1) = τ t1 + (1− τ)t0
P(τm = 1|smn = 0) = τ. (16)

Thus, the relation in equation (15) implies that the presence, or absence, of a connection
between nodem and any other node does not condition, by itself, the activity of nodem (on
average). This is consistent with equation (12).

Relation (15) may also be seen as a ‘detailed balance’: if each node represents the state
of a dynamical system and this can move only from one state to an adjacent one at each time
step, then the probability of observing the evolution of the system from statem of ‘class 1’
(τm = 1) to staten of ‘class 0’ (τn = 0) is equal to the probability of observing the reverse
kind of transition.

One of the aims of this paper is to show that the marginals in equations (8) over the random
graph can be realized if the parameters of this stochastic system satisfy appropriate conditions.
In particular, I show that, for fixeds andτ , there exists an upper bound tot1 above which the
network can no longer support the desired statistics.

Trivially, the problem is solvable ift1 = τ , that is with independent RVs. I concentrate
on the case witht1 > τ ; the case witht1 < τ is similarly treatable.

The probability for two nodes to be reachable, one from the other, through a path in
G(M, s) is easily found to be as in figure 1 versus the average number of connections per
node (= s ′ = s · (M − 1), the analytical relation beings ′ = − ln(1−p)

p
; cf appendix A). In the

range interesting for neuroscience (2< s ′ < 10) such probability is very near to 1. Ift1 were
equal to 1, the large majority of the nodes would be in the same state (0 or 1), which is not
acceptable. Thus,t1 must be smaller than 1.

Is it sufficient to keept1 smaller than 1? One is brought to conjecture that the higher the
correlation inside the set of nodes (that is the highers ′), the lower the upper bound tot1. This
idea seems to be confirmed by the results obtained in this paper.
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4.1. Existing theorems

The theorem of Kellerer [2,15] gives a necessary and sufficient condition for the consistency of
a finite set of marginals, but in the present context it is not useful. In fact, since I am dealing with
a large number of randomly correlated RVs, the hypotheses of Kellerer’s theorem cannot be
verified for each specific realization of the random graph representing the correlations. On the
other hand, I could verify the hypothesesin probabilitywhen considering the thermodynamic
limit (M →∞), but then I would have an infinite set of marginals and the cited theorem could
not be applied. Besides, the theorem requires the verification of a condition over a large set of
test functions, and this would also be a difficult task.

The crucial hypothesis in Vorobev’s theorem [1] is the regularity of the complex of the
subsets of RVs that are the arguments of the given marginals. Roughly speaking, the set
of marginals is consistent (or ‘extendable’ in Vorobev’s terminology) if it is not possible to
describe a cycle in the cited complex passing from one subset to another one only if these have
not empty intersection. Obviously, this is not the case in the present model, since every pair
of nodes is argument of a marginal. So, Vorobev’s theorem cannot be applied in the present
context. However, it should be noted that most of the pair marginals are almost factorable, and
this could be a hint toward an extension of Vorobev’s theorem to the present model.

4.2. Conditions from self-averaging

A first condition on the parameters is obtained from the reasonable assumption that in the
thermodynamic limit the average activity on the graph is not affected by the condition that one
particular node is active (actually, this is equivalent to requesting self-averaging of the average
activity 1

M

∑
m τm; cf appendix B):〈

1

M − 1

∑
m6=n

τm

∣∣∣∣τn = 1

〉
= 1

M − 1

∑
m6=n
P(τm = 1|τn = 1, S) −→ τ (17)

for anyn. Then the average over the nodes must be

1

M

∑
n

1

M − 1

∑
m6=n
P(τm = 1|τn = 1, S) −→ τ. (18)

Using equations (8), it follows that

s · (t1− τ) = 0. (19)

If s is finite whenM →∞, t1 cannot be greater thanτ . Thus, the stochastic system I consider
in this paper makes sense only if limM→∞ s = 0. Indeed, it is interesting to study the statistical
properties of the model without conditioning them through adequate tuning of the input patterns
statistics: The main question is how the structure of connections can reflect the correlations
among the parallel contributes of the input signals, keeping the average activity constant.

If I allowed for anticorrelation between unconnected nodes, that is

P(τm = 1, τn = 1|smn) = τ t1smn + τx(1− smn)
P(τm = 1, τn = 0|smn) = (1− τ)t0smn + (1− τ)x ′(1− smn)

(20)

with x < τ andx ′ = τ 1−x
1−τ > τ , the previous argument of self-averaging would give the bound

(see appendix B)

x = τ − st1
1− s . (21)

This implies thatt1 must never be larger thanτ
s
. In particular,t1 must be equal toτ if s = 1

(while x loses physical meaning).
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Thus, marginals in (20) can satisfy the request of self-averaging also with finites. In this
paper I discuss only the case withs = O( 1

M
), and hence withx = τ , which seems to be the

most interesting case, at least in relation to the neuroscientific problem. Perhaps useful results
for the finites case could be obtained by also introducing correlations in the set of connections
{smn}, such as that the probability for the connection(i, j) to exist is larger than chance if the
connections(i, k) and(k, j) exist, for anyk. This would also be interesting from the point of
view of neuroscience since there is appreciable evidence that any two small neocortical areas
are more likely connected with each other if another area is connected to both [16].

5. A fictitious dynamics from a Markov RF

I introduce a stochastic dynamics of the activity of interacting nodes to construct a probability
distribution whose marginals are those in equations (7), whens ′ is finite. I want to underscore
that this dynamics is purely fictitious: no particular real physical process is assumed to underlie
the stochastic system. The desired PDF is given by the asymptotic distribution of the dynamical
process, so demonstrating that at least one solution to the marginal problem exists.

First, guessing an Ansatz, I consider the marginals in equation (8) withf 11
mn = f 01

mn = 1 for
any connected pair(m, n), and insert them into equation (4) in order to obtain the conditional
probability distribution of the activities of all the nodes directly connected to another one, the
condition being the activity of the latter:

P({τn, ∀n|smn = 1}|τm = 1) = tn+
1 (1− t1)n−

P({τn, ∀n|smn = 1}|τm = 0) = tn+
0 (1− t0)n−

(22)

wheren+ andn− are the numbers of adjacent nodes in activity level 1 and, respectively, 0. The
assumption of conditional independence in equations (22) as a first approximation is partially
justified by the absence, with probability equal to 1, of direct connections among then+ + n−
nodes connected with modulem, and can be considered as the zero-th-order approximation
of equation (5) for smallψmn. This approximation is adopted due to the difficulties in the
analytical treatment (see the following), and in fact is a limit to the application of the method
that instead requires the most general local probability distribution.

For a pair of unconnected nodes(m, n) that share a common neighbour, equations (22)
give

h11
mn = τ

(
t1

τ

)2

+ (1− τ)
(
t0

τ

)2

. (23)

At this point, the PDF for a node given the activities of all its neighbours can be found
through Bayesian inversion. After some algebra, this can be written as

P(τm = 1|{τn, ∀n|smn = 1}) = 1

1 + exp{−β(n+ − λn− +µ)} (24)

being

β = ln
t1

t0
βλ = ln

1− t0
1− t1 βµ = ln

τ

1− τ . (25)

Equation (24) defines a Markov RF over the graph if the probabilities defined in equations (22)
are consistent.

Then I use equation (24) to generate the discrete-time stochastic asynchronous dynamics,
that can be recognized as a standard discrete-time heat-bath dynamics [17].

At each time step:

• choose a node randomly
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• update its activity with probability given by equation (24).

Actually, numerical simulations have shown that the system is more stable (in simulations
M must be finite) and reaches equilibrium more easily if the termµ in equation (24), which is
mainly responsible for keeping the average activity in the net at the desired level, is modified as
the instantaneous average activity deviates fromτ . Thus, in place of equation (24) I consider
the following expression:

P(τm = 1|{τn, ∀n 6= m}) = 1

1 + exp{−β(n+ − λn− +µ 1
τM

∑
m τm)}

. (26)

So the attractor with average activityτ is strengthened. When, at equilibrium, the average
activity is equal toτ , expression (26) coincides with expression (24).

5.1. Analytical approach

The single-spin Markov dynamics generated by equation (26) satisfies detailed balance in the
thermodynamic limit. Hence, during time evolution, the system tends to an equilibrium state.
It can be shown, with standard methods of the heat-bath literature, that the corresponding
asymptotic PDF over the configurations is Boltzmann-like with Hamiltonian

H = −1− λ
2

∑
i,j

sij τiτj + λ
∑
i,j

sij τi(1− τj )− µ

2τM

(∑
i

τi

)2

. (27)

Applied to the Markov RF of equation (24), the representation theorem (section 2; [4,18])
confirms, through equation (6), the form of the Hamiltonian in equation (27) (except for the
strengthening factor ofµ) in the thermodynamic limit, since the contributions toH by the
cliques with more than two nodes are negligible. However, the theorem cannot substitute the
construction of a dynamics since the latter is needed for the simulations until an analytical
solution of the statistical canonical model withH is found (from which to extract the relation
betweentmax

1 and s ′). It seems interesting that the use of the characteristics† of a Markov
RF as updating laws for an asynchronous dynamics drives the system toward an equilibrium
distribution that coincides with the global distribution provided by the equivalence theorem.

The Boltzmann distribution with the Hamiltonian of equation (27) is the candidate for
the distribution with the desired marginals I am looking for. Mathematical tools of the
statistical mechanics of the Boltzmann–Gibbs ensemble may be used, in principle, to study
the equilibrium properties of the system. Unfortunately, the application of the mean-field
techniques to the calculation of the partition function soon finds a serious mathematical obstacle
that would require the introduction of a large number of order parameters [19,20].

Because the system does not lend itself to a mean-field analysis, I try another approach.
If t1 were equal toτ the system would not deviate from independence and the only effective
term of the Hamiltonian in equation (27) in the partition function would be

H0 = − µ

2τM

(∑
i

τi

)2

. (28)

Such a reduced Hamiltonian is easily treatable with mean-field techniques. Thus, I perform a
perturbative expansion fort1 ' τ . Definingε = t1 − t0 as the small parameter, the constants

† Thecharacteristicsof a Markov RF are the conditional probabilities of single nodes given the activities of the
neighbours; as, e.g., equations (24) and (26).
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entering the ‘perturbed’ Hamiltonian are

t1 = τ + ε(1− τ)
t0 = τ − ετ
β = ε

τ
+ O(ε2)

βλ = ε

1− τ + O(ε2).

(29)

Writing H asH0 +H1 and

Z0 =
∑
{τi }

exp(−βH0({τi})) (30)

up to the second order inε I have

Z ' Z0[1− 〈βH1〉0 + 1
2〈(βH1)

2〉0] (31)

where〈A〉0 is the average ofA in the ensemble with HamiltonianH0 (‘unperturbed’ system).
Then, the free energy is (up to O(ε3))

〈〈lnZ〉〉 ' lnZ0 − 〈〈
〈
βH1

〉
0〉〉 + 1

2〈〈[〈(βH1)
2〉0 − (〈βH1〉0)2]〉〉 (32)

where〈〈·〉〉 indicates the average over the quenched variables.
To verify if the statistics of the system have the desired marginals, I define the ‘observables’

t̃1 = 1

τMs ′
∑
i,j

sij τiτj

τ̃ = 1

M

∑
i

τi .

(33)

The second one(τ̃ ) resembles the expression of the average magnetization typical of the studies
on spin systems, whilẽt1 looks like the energy density of extremely diluted ferromagnets. In
the present case,τ̃ andt̃1 are used to extract information about, respectively, the average activity
across the system, and the average correlation in pairs of connected sites.

The averages of the quantities in equations (33) can be derived from equation (32), and
are respectively equal tot1 + O(ε2) andτ + O(ε2). This means that the canonical model, in the
approximation used in the mathematical treatment, obeys a PDF whose marginals are those of
equations (8).

This result strongly supports the belief that the marginal problem analysed in this work
(with s ′ finite) has at least one solution and, consequently, that the Ansatz for the marginal used
to solve the original neurobiological problem constitutes a meaningful model. Unfortunately,
the perturbative expansion up to orderε2 does not provide an upper bound tot1. As already
stated, any increase ins ′ makes the system more strongly correlated; this should reduce the
upper bound tot1 monotonically until, fors ′ large enough, the statistics should not appreciably
deviate from independence(t1 = τ).

The master equation approach to the averages as in [21, 22] seems to be unsuitable here
due to the symmetry of the connections(smn = snm).

5.2. Analogy with the Ising ferromagnet

One can think about the correlated system in question as an Ising spin model in which each spin
interacts ferromagnetically with a small number (abouts ′) of other spins randomly chosen at the
beginning. Let us define a ‘cluster centred around a spin’ as the set of all the spins connected to
that one; this relation is quenched. It can be shown, at least in an approximate calculation (e.g.
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Figure 2. Typical output of a simulation with̃t1 andτ in
the useful region (s′ = 5,τ = 0.4, t1 = 0.5,M = 40 000).

large temperature), that, as intuition suggests, the spins of a cluster tend to be oriented parallel
to the centre of that cluster even if the temperature is well above the Curie point and the global
magnetization is zero. In a sense this phenomenon recalls Weiss domains but in the present
model there is no topology: the spins belonging to the same cluster may be scattered throughout
the system and may interact with several different clusters. Ifs is finite, the ferromagnetic
model is purely mean-field and the phenomenon of cluster polarization disappears (sij are
homogeneously distributed).

5.3. Simulation results

I have implemented the dynamics in numerical simulations, wheres ′ has been taken between
2 and 8 since this appears to be the interesting region to study.

The main quantities observed in the simulations have beent̃1, τ̃ , t̃0. According to these
‘order parameters’ (actually, the last one is obtainable from the other two), the system soon
reaches equilibrium (if the selected parameterst1 andτ are in due ranges;t0 is then fixed
by relation (15)). The oscillations of the order parameters derive from the finiteness of the
simulated net and are in good agreement with the prediction of the variances (see appendix B).

In figure 2 a typical output of the simulation whent1 is in the useful range (see
below) is shown. At first the dynamics drive the system activities toward the equilibrium
distribution. Then, the order parameters oscillate around their averages:t̃1 ' 0.5000±0.0043,
τ̃ ' 0.4001± 0.0037, t̃0 ' 0.3335± 0.0038, with standard deviations that are compatible
with the estimates based on the pattern statistics (appendix B) and that decrease as the number
of nodes increases. The relation in equation (15) is fully respected, that is:

(1− τ̃ )t̃0 = τ̃ (1− t̃1). (34)

Thus, in this case, the marginals family of equations (8) is consistent.
Figure 3 shows the output of a simulation with parameterst1 and τ biologically

plausible. The order parameters assume the following values:t̃1 ' 0.3956± 0.0100,
τ̃ ' 0.0100±0.0002,t̃0 ' 0.0060±0.0002. The standard deviations are compatible with the
estimates and the relation in equation (15) is fully respected. Also, in this case, equations (8)
are consistent.

In these conditions the system does not switch among different equilibrium values of the
order parameters, possibly indicating that the dynamics cannot switch to different metastable
states, at least at the level of the measured quantities. This has been verified by testing the
system dynamics for a very long time and for several quenched structures of connections.

The other important result from simulations is the estimation of the upper boundtmax
1 to
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Figure 3. Output of a simulation with biologically
plausible parameters:t1 = 0.4, τ = 0.01, s′ = 4,
M = 105. The quantitiesτ̃ and t̃0 are very small
compared witht̃1 ( t1

τ
= 40).

Figure 4. Estimation, from simulations, of the upper
bounds tot1 as functions ofs′, for three values ofτ (0.01,
0.03, 0.05).

t1: that is, the value oft1 beyond which the system is no longer able to sustain the distribution
with the desired marginals. Ift1 is increased above its upper bound, the average values oft̃1,
τ̃ , t̃0 are no longer equal tot1, τ , t0, beingt̃1 andτ̃ lower thant1 andτ , respectively. In this
out-region case the relation in equation (15) is not respected.

Figure 4 shows the dependence oftmax
1 on s ′ for three different values ofτ (around the

biologically interesting values). It confirms that the largers ′, the smaller the useful range
available tot1. This result, obviously, could be non-universal; other dynamics, that is other
Ansatze, on the probability of equation (5), might provide the system with a larger useful
range fort1. So, the bound depicted in figure 4 might not necessarily be the one implied by
the general assumption about the marginals in equation (7). Further investigation is going on
to find an analytical prediction of the bound and to verify its generality.

Simulations also show the necessity of the structural factors, at least when the RF is defined
by equation (26). For example, it is very clear from computer outputs that the correlation
between two unconnected nodes that share a common neighbour is, for many such pairs of
nodes, appreciably larger than in the case of independence (e.g.†,〈τmτn〉 = 0.0055± 0.0007
instead of 0.0025± 0.0005, beingτ = 0.05, t1 = 0.3, s ′ = 4, M = 20 000; or
〈τmτn〉 = 0.0044± 0.0005 instead of 0.0025± 0.0005, beingτ = 0.05, t1 = 0.2, s ′ = 4,
M = 100 000). The values are in good agreement with the valueτ t21 + (1 − τ)t20 from
equation (23), which is what one would expect from a generating dynamics such as the one
implemented here considering that the probability for a pair of nodes to have more than one
common neighbour in the diluted graph is negligible, and that the contribution given by longer
connecting paths is not dominant. The ensemble average of the activity of any node is in good
agreement with the fixed value ofτ . The correlation of the activities of connected nodes is
usually in excellent agreement with the expected valuet1τ .

6. Conclusions

In the first part of this paper I have proved a necessary and sufficient condition for the
consistency of a class of families of marginal distributions defined on finite sets of discrete

† The indicated standard deviations are not the experimental ones (overestimates) but those inferred from a binomial
distribution over trials with the mean equal to the indicated experimental mean.
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random variables. I have shown that a family of marginals is consistent if and only if
such marginals equal the corresponding marginalizations of a Boltzmann–Gibbs distribution
constructed according to a precise rule.

The second part of the paper has been dedicated to the study of a particular system from
theoretical neuroscience. In a recent work [14] it has been shown that one of the ingredients
to construct a plausible model of the inhomogeneous neuronal networks subserving memory
retrieval in the associative areas of primate neocortex is the introduction of correlations among
the activities of connected modules of recurrent networks. Modules, consisting of densely
connected neurons, can each be in one of two possible states (either active or non-active). Any
two modules are more likely to be in the same state of activity if connected by a channel of
communication through which, as an abstraction, neuronal projections are allowed to pass.
This biological system is modelled as a set of binary random variables (corresponding to
modular activities) that are randomly correlated, thus constituting a graph where the presence
of an edge between two nodes is to be interpreted as the existence of prominent interdependence
between the two corresponding RVs.

The positive results obtained in [14] are valid only if one verifies the hypothesis used there
about the marginal distributions of the activities of pairs of connected and unconnected units
(modules). In particular, the set of marginals has to be confirmed as a consistent family.

Already existing (to my knowledge) theorems about probability distributions with given
marginals cannot be applied because of the large number of RVs together with the randomness
in the structure of correlations.

I have formulated the problem in terms of probability distributions on random graphs.
I have demonstrated that the stochastic system cannot be realized if any node is connected
with finite probability to any other node while the global average activity is fixed. Then, to
make use of the condition derived in the first part of the paper, I have produced a fictitious
dynamics whose asymptotic distribution has the desired marginals, thus showing that the set
of given marginals is consistent. For small correlations I have analytically accounted for the
equilibrium properties of the system. For arbitrary correlations I have performed numerical
simulations whose outputs confirm (within the statistical fluctuations) the analytical results
more generally and provide the upper bound to the node activity correlation as a function of
the average number of neighbours per node, for some values of the average activity. Both the
approaches strongly suggest that the particular marginals family is consistent, thus supporting
the underlying neuronal theory. An analogy with a magnetic system is also proposed to
emphasize the main phenomenon.

Further investigations are going on to find out an analytical relation between the upper
bound to the correlation and the number of neighbours that fits the numerical results.

Appendix A. Connectivity of the random graph

Letp be the probability for any node, different from nodem, to be connected to nodem through
a path belonging to the graph. Then

1− p =
M−1∑
k=0

(
M − 1
k

)
sk(1− s)M−1−k(1− p)k

=
(

1− ps ′

M − 1

)M−1

→ e−ps
′

(A.1)
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in the thermodynamic limit. It follows that

s ′ = − ln(1− p)
p

. (A.2)

Appendix B. Self-averaging

As already stated, the average over the patterns of the average activity in the network is〈
1

M

∑
m

τm

〉
= τ. (B.1)

The fluctuation around this mean can be calculated:

σ 2 =
〈

1

M

∑
m

(τm − τ) · 1

M

∑
n

(τn − τ)
〉

= 1

M2

∑
m,n

〈(τm − τ)(τn − τ)〉

= τ(1− τ)
M

+
2

M2

∑
(m,n)

〈τmτn〉 − 4τ

M2

∑
m,n

〈τm〉 + M − 1

M
τ 2

= τ(1− τ)
M

2

M2

∑
(m,n)

[f 11
mnsmnt1τ + h11

mn(1− smn)xτ ]

−2(M − 1)τ

M2

∑
m

〈τm〉 + M − 1

M
τ 2. (B.2)

Using (9):

σ 2 = τ(1− τ)
M

+
M − 1

M
st1τ +

M − 1

M
(1− s)xτ − M − 1

M
τ 2. (B.3)

In the thermodynamic limit(M →∞):
σ 2 −→ sτ (t1− x) + τ(x − τ). (B.4)

Assuming self-averaging means to assume that the right-hand side of equation (B.4) vanishes.
This implies that

x = τ − st1
1− s (B.5)

which is easily seen to be not larger thanτ .
In the simulations I have takens = s ′

M−1, with s ′ finite, and, according to equation (B.5),
x = τ . Thus, the fluctuation is given by

σ 2 = τ(1− τ)
M

+
M − 1

M
sτ(t1− τ). (B.6)

In a very similar way, fluctuation of the parametert̃1 can be estimated:

〈t̃1〉 = t1 (B.7)

〈(t̃1− t1)2〉 ' 2

M

t1

τ

(
t1 +

1

s ′

)
(B.8)

having assumed the approximation

P(τi = 1, τj = 1, τk = 1, τl = 1|smn = 1, skl = 1)

' P(τi = 1, τj = 1|smn = 1) · P(τk = 1, τl = 1|skl = 1) (B.9)

with i, j , k, l being four different site indices. The estimate in (B.6) is in excellent
agreement with simulation data, while that in (B.8) is a slight overestimate, perhaps due
to the approximation (B.9).
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